
^ y 
CONTRACTOR REPORT |RS-8232-2/^^ 
SAND89-7029 
Unlimited Release 
UC-275 

8232-2//069226 
8232-2II069226 

00000001 - 

(t<^ 
/ 

00000001 - 

Use of Imaging Refractive Secondaries 
in Photovoltaic Concentrators 

Dr. Lawrence W. James 
James Associates 
1525 East County Road 58 
Fort Collins, CO 80524 

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 
and Livermore, California 94550 for the United States Department of Energy 
under Contract DE-AC04-76DP007S9 

Printed July 1989 

^ 



Issued by Sandia National Laboratories, operated for the United States 
Department of Energy by Sandia Corporation. 
NOTICE: This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States Govern¬ 
ment nor any agency thereof, nor any of their employees, nor any of their 
contractors, subcontractors, or their employees, makes any warranty, express 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product or process 
disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the 
United States Government, any agency thereof or any of their contractors or 
subcontractors. The views and opinions expressed herein do not necessarily 
state or reflect those of the United States Government, any agency thereof or 
any of their contractors. 

Printed in the United States of America. This report has been reproduced 
directly from the best available copy. 

Available to DOE and DOE contractors from 
Office of Scientific and Technical Information 
PO Box 62 
Oak Ridge, TN 37831 

Prices available from (615) 576-8401, FTS 626-8401 

Available to the public from 
National Technical Information Service 
US Department of Commerce 
5285 Port Royal Rd 
Springfield, VA 22161 

NTIS price codes 
Printed copy: A04 
Microfiche copy: A01 



Distribution 
Category UC-275 

SAND89-7029 
Unlimited Release 
Printed July 1989 

USE OF IMAGING REFRACTIVE SECONDARIES IN PHOTOVOLTAIC CONCENTRATORS 

Dr. Lawrence W. James 
James Associates 

1525 East County Road 58 

Fort Collins, CO 80524 
303-484-5296 

Sandia Contract 05-8713 

ABSTRACT 

A new type of secondary optical element for two-axis photovoltaic solar concentrator 
systems is described. This optical system is known as the double-imaging concentrator system 
because the sun is imaged by the primary Fresnel lens onto the secondary lens, and the primary 
lens is imaged by the secondary lens onto the cell. The secondary lens can take two forms. An 
egg-shaped (ellipsoidal) glass secondary is suspended above the cell in one implementation. The 
alternative configuration, called the SILO secondary, allows gluing the secondary lens directly 
to the cell. This SILO lens is a glass cylinder or cone with a molded half-ellipsoidal top 
surface. In both cases, the fact that the primary lens is imaged onto the cell means that if the 
primary lens is uniformly illuminated, then the cell is uniformly illuminated, independent of 
first-order of tracking errors, mounting errors, and primary Fresnel lens aberrations. Monte 
Carlo ray trace modeling of these systems with the"FgImgSec" computer code shows significant 
advantages over other optical systems in the important areas of photon flux uniformity over the 
solar cell surface, and maximum allowable mounting and aiming tolerances. Parametric studies 
of concentration ratio and primary lens f-number show the limits in system design and give 
guidance for system optimization. 
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Limitations of Currently Used Secondaries 

Current designs for concentrator photovoltaic systems use either a hollow reflective metal 
cone secondary or a solid glass cone secondary that relies on total internal reflection (TIR). 
Each of these types of secondaries has several disadvantages. 

With an aluminum cone secondary, the cell surface is exposed to the atmosphere. The cell 
may require a protective covering to achieve high reliability over a long operating life. This 
covering is an additional expense and may cause additional optical losses due to reflectivity 
from its front surface. The measured reflectivity of real aluminum secondaries is less than the 
theoretical reflectivity for aluminum and is considerably less than 1, causing serious optical 
losses, especially under off-track conditions. 

TIR secondaries, to be economically attractive, would need to be produced by some sort of 
molding process. Glass molding can produce high-quality surfaces, but cannot produce sharp 
corners. The TIR secondary requires sharp corners next to the cell to prevent serious optical 
losses. The TIR secondary must be glued to the cell with a flexible optical cement, but the 
cement must not be allowed to touch the side of the secondary. The manufacturing and 
assembly processes have such tight tolerances that they may never be cost effective. 

The Fresnel primary lens design for either of these types of secondaries is a compromise 
done by trying to juggle ray placement to reduce optical losses and keep the peak flux on the 
cell from becoming excessive. The optimum design depends on the grid pattern of the cell. 
However the juggling is done, it is a delicate balancing act of rays from different zones on the 
lens, of rays bounced and not bounced off of the secondary, etc. That delicate balance 
disappears rapidly when the Fresnel lens warps due to humidity, or a tracking or mounting 
error occurs, forcing up the cost of the system by requiring fairly tight tolerances and material 
thicknesses, weights, and prices determined by stiffness criteria. A cone secondary of optimum 
optical design may be too expensive, forcing further efficiency losses due to economics. No 
designer can ever be sure of having the "best" design of this type, regardless of how much time 
was spent trying different lens zoning schemes. 

An ideal secondary optical element would circumvent these limitations. It would give a 

uniform flux distribution over the cell while incurring minimal optical losses. The flux 
distribution it produced on the cell would be much less sensitive to tracking and mounting 
errors, allowing a loosening of system tolerances. Its design would be straightforward and 
would not involve any precise balancing of ray placement by Fresnel-facet-angle fine-tuning. 
It would be mechanically rugged, would protect the cell surface from moisture and corrosion, 
would deliver high optical efficiency, and would be economical to produce in a high-volume, 
vertically integrated manufacturing operation. Fortunately there is such a secondary. The 
purpose of this report is to detail its design and use. 

The calculations and figures shown in this report were all done by computer simulation 
using the ray tracing software "FgImgSec" (Flat groove Imaging Secondary), which is available 
from James Associates for HP 9000 computers and PC compatibles. No actual hardware was 
constructed on this contract, and all results shown are calculations rather than experimental 
measurements. 





Double Imaging Concentrating Optics 

The best optical system, at the current state of the art, for solar concentration in the 
200-500X range onto photovoltaic cells is the double imaging system. It consists of two lenses, 
a Fresnel primary lens, which images the sun onto the middle of the secondary lens, and a solid 
aspheric secondary lens, which images the primary lens onto the cell1. Figure 1 below shows 
an overview of the optical system, with the Fresnel primary lens on the left, the cell on the 
right, and the secondary lens between the two, close to the cell. 

Figure 1: Example of a double imaging concentrator. 

The Fresnel lens is designed as an imaging lens, placing an image of the sun in the plane of the 
widest part of the secondary lens. This makes the Fresnel lens straightforward to design. In 
aiming as much of the light as possible as close to the center of the secondary as possible, it 
also gives the widest possible tolerances for tracking and mounting errors. 

1 Aden B. Meinel and Marjorie P. Meinel, Applied Solar Energy. An Introduction (Reading, 
Massachusetts: Addison-Wesley Publishing Company, 1976), p. 192. 



Figure 2 shows the Fresnel lens (along its diagonal), the secondary lens and the cell with 
light incident at three discrete points on the primary lens (the center, the corner, and the center 
to edge distance), so that the imaging of points on the Fresnel lens may be seen in the traced 
rays. 

Figure 2: Ray traces showing origination points on the primary Fresnel lens. 



Figure 3 shows a close-up of the secondary lens and the cell (along its diagonal) for the 
case in which light is incident at the three discrete points on the primary lens, points that are 
shown in Figure 2. Each point on the Fresnel primary lens is imaged to a point on the cell. 
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Figure 3: Ray traces showing the imaging properties of the secondary lens. 

This secondary lens may be understood by an analogy to a camera lens. The secondary 
lens essentially takes a picture of the primary lens onto the cell, which is where the film would 
be in a camera. The secondary lens is very fast, with an effective f-number of approximately 
0.6 so that it is an efficient light collector. As such, it must be made in an aspheric shape to 
perform well. 



The secondary lens would probably be manufactured by a molding process, so the aspheric 
shape should not be an additional cost element for each manufactured lens, only for the 
original tooling. The lens could be made from moldable optical glass as is done by several 
manufacturers for similar lenses used in other fields (such as disposable cameras and condenser 
lenses). It might even be possible to mold the lens in plastic, although the high solar flux 
densities present in the lens could limit this option. 

Figure 4 shows ray spot patterns on the lens, the secondary input, and the cell, for an 
enlarged artificial sun (to represent many different tracking errors at once) with an angular 
diameter of 2.17° (instead of 0.54°) , and for discrete points laid out in a rectangular array on 
the lens surface. The scatter in the dots on the cell plane shows the accuracy of imaging that is 
obtained. It is not perfect, but it is quite adequate for this application. 
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Figure 4: Spot diagram showing the imaging properties of the lens. 



Forming an image of the Fresnel lens on the cell has several advantages. If the Fresnel 
lens is uniformly illuminated, then the cell is uniformly illuminated, independent of the exact 
direction of the rays coming out of the Fresnel lens. This means that (to first order) when the 
array is off track or the Fresnel lens becomes dome shaped because of moisture, the flux 
distribution on the cell doesn't change. 

The chromatic aberration of the primary lens is corrected by the secondary lens, making 
the cell illumination not only very uniform in total flux, but also in flux at each individual 
wavelength. One would not have to change the design to switch between Si and GaAs cells. 

A reduction in image size occurs in the imaging process, just as in a camera. In the case 
of a 300X concentrator system, the width of the lens image on the cell is about 1/\/300 = 5.8% 
of the actual lens width. If you think about the imaging process, you will realize that the 
primary lens may be offset from the secondary-cell assembly in the X-Y plane by a significant 
amount, while only shifting the image on the cell by 5.8% of that amount. This makes the 
system very tolerant of X-Y plane mounting errors between the primary lens and the secondary 
lens-cell assembly. 

The system is also very tolerant of mounting errors in Fresnel-lens to cell-assembly 
spacing. Changing this spacing simply moves the image on the cell out of focus slightly. The 
allowable error range of Fresnel-lens to cell-assembly spacing may be compared to the depth- 
of-field range of a camera. 

All of these discussions of insensitivity to all sorts of tolerances only apply, of course, as 

long as the rays from the primary lens actually hit the secondary lens. That is why the Fresnel 
lens is designed to direct its rays to the center of the secondary lens. Examination of Figure 1 

shows that (depending on the mounting scheme for the secondary) some rays that miss the 
secondary under extreme error conditions may hit the cell directly. 

Moving now from generalities to specifics, we look at the calculated performance at air 
mass 1.5 of a specific example design of a 300X geometric concentrator of this type. The cell 
is square, the primary Fresnel lens is a 7-inch square compression-molded lens with 0.06-inch 
wide facets, and the lens-to-cell spacing is 12.518 inches. The secondary is molded out of BK7 
glass. The secondary looks like an egg and is composed of half of an ellipsoid on the top and 
half of a ellipsoid with a different major axis on the bottom. The secondary lens has a 

diameter of 0.890 inches. Thus each ellipsoidal surface has a minor axis of 0.890 inches. The 
major axis of the upper ellipsoid is 1.077 inches. The major axis of the lower ellipsoid is 0.845 
inches. The widest point in the secondary is mounted 0.518 inches above the cell top surface, 
giving a clearance of 0.096 inches between the secondary bottom and the cell. 

While the computer graphics show the lens as a smooth-surfaced egg, in manufacturing by 
molding, there would be a "belt" about 0.05 inches wide around the middle of the egg where 
the glass was squeezed out in between the top and bottom halves of the mold. The upper flat 
surface of this belt would be used as the mounting surface for the secondary lens. (The upper 
surface is used so that molding tolerances in the belt width do not affect the most critical 
dimension in the assembly, which is the top-lens-surface to cell-plane distance). 
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Figure 5: Monte Carlo ray trace spot patterns for the 300X egg-shaped secondary example. 

The computer printout in Figure 5 shows the ray spot patterns for this design when 
everything is in perfect alignment. Note that there is an unilluminated band 0.007-inch wide 
around the edge of the cell active area. This is to provide a 10.005-inch tolerance for mounting 
of the center of the secondary lens with respect to the center of the cell. These values plus the 
±0.005-inch tolerance for the distance from the top of the secondary-lens-mounting-belt to the 
cell plane are the only two dimensions in the entire module that must be held to close 
tolerances. 
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Figure 6: Short-circuit current flux for the cell in the 300X egg-shaped secondary example. 

Variation in short-circuit current flux over the active area of the cell is shown in Figure 
6. The cell occupies all but the outer row of squares in the figure. Note that the flux is 
extremely uniform. Such a uniform flux should eliminate the loss in cell performance caused 
by nonuniform illumination. High-resistivity cells have a loss in performance when the 
incident flux is nonuniform due to lifetime shortening from high carrier concentrations in the 
high-flux regions. Low-resistivity cells have a loss in performance when the incident flux is 
nonuniform due to increased IR losses in the grid lines and the semiconductor sheet resistivity. 
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The high transmission and uniform flux without spillage off the sides of the cell are 
preserved with tracking and mounting errors that would occur in a real system, not just with 
everything modeled to be in perfect alignment. Figure 7 shows the optics transmission versus 
tracking error. It is virtually flat out to 0.7 degree and quite usable out to a full 1.2 degrees 
tracking error. 
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Figure 7: Optical transmission (short-circuit current weighted) of the complete optical system 
versus tracking error in the 300X egg-shaped secondary example. 
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The peak flux occurring on the cell gives a good indication of how uniform the flux 
distribution stays. Figure 8 shows that the peak flux remains at a nearly constant 300 suns out 
to 0.9-degree tracking error, and only reaches 450 suns under worst case tracking error 
conditions. 
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Figure 8: Peak flux density (short-circuit current weighted) of the complete optical system 
versus tracking error in the 300X egg-shaped secondary example. 
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The curves shown so far have been for an ideal multi-layer antireflection (AR) coating 
applied to the secondary lens. Such a coating would minimize reflective losses at the two 
secondary surfaces. These coatings are common practice in the camera industry, but may not 
be economically viable for solar systems without some breakthrough in thin film deposition 
technology. 

The same curves were calculated for a single layer AR coating of a material such as MgF. 
Such a single layer AR coating may be economically viable, especially if it can be done by a 

chemical dip or spray of the secondary lens. The transmission curve for that case is shown in 
Figure 9. The fall off in transmission below 0.8 degrees tracking error is principally due to 
increasing reflectivity of the secondary lens with an oblique incidence angle. 
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Figure 9: Optical transmission (short-circuit current weighted) of the complete optical system 
versus tracking error in the 300X egg-shaped secondary example with a single layer 
AR coating. 
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If no economically feasible AR coating can be developed, the secondary lens would need 
to be used without an AR coating. The transmission curve for that case is shown in Figure 10. 
This is the worst case transmission curve. 
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Figure 10: Optical transmission (short-circuit current weighted) of the complete optical system 
versus tracking error in the 300X egg-shaped secondary example with no AR 
coating. 
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As mentioned earlier, this double imaging set-up is not only more tolerant of tracking 
errors, it is also more tolerant of mounting errors. Figure 11 shows the optics transmission as a 

function of mounting error in the X-Y plane (parallel to the lens). 
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Figure 11: Optical transmission (short-circuit current weighted) of the complete optical system 
versus mounting error in the cell plane for the 300X egg-shaped secondary example. 
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Figure 12 shows that the tolerance of X-Y mounting errors extends to flux uniformity. 
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Figure 12: Peak flux density (short-circuit current weighted) of the complete optical system 
versus mounting error in the cell plane for the 300X egg-shaped secondary example. 
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Insensitivity of the optical transmission to the spacing between the Fresnel lens and the 
secondary-cell assembly is shown in Figure 13. This is the depth-of-field phenomenon 
referred to earlier. 
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Figure 13: Optical transmission (short-circuit current weighted) of the complete optical system 
versus mounting error perpendicular to the cell plane for the 300X egg-shaped 
secondary example. 
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The peak flux as a function of the lens-to-cell assembly mounting error is shown in 
Figure 14. A reasonable specification for this parameter would seem to be ± 0.4 inches. 
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Figure 14:, Peak flux density (short-circuit current weighted) of the complete optical system 
versus mounting error perpendicular to the cell plane for the 300X egg-shaped 
secondary example. 

Consider the ramifications of these kinds of allowable tolerances. The normal error 
budget for current modules can be enlarged in almost every area. The larger error budget 
means thinner, lighter, lower cost materials could be used in the construction of a module. 
Lighter modules and the increased allowable pointing error would mean a lighter and cheaper 
frame to hold the modules. The cost savings could go on and on. 
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The Single Surface Imaging Secondary 

The optical system discussed to this point has many advantages over the reflective cone 
systems currently used. It still has a few disadvantages though. The cell surface is 

unprotected, and the optical transmission is reduced by the reflection loss at the secondary exit 
optical surface. One further refinement will eliminate these two disadvantages. One normally 
thinks of a lens as having two surfaces with air on both sides, but that is not necessary. A 

single surface between two materials of differing refractive index can act as a lens. Thus the 
cell can be placed "inside" the glass of the secondary lens (from an optical point of view)2, and 
the lens can still be made to function as described on the earlier pages. This would be 
physically implemented by building a lens that is half of an ellipsoid on the top, and shaped 
like a cylinder or a cone on the bottom. The bottom surface of the cylinder or cone would be 

flat and would be glued directly to the cell with a flexible optical cement that has roughly the 
same index of refraction as the glass. Figure 15 shows a side view of a system using the single 
active surface secondary, sometimes referred to as the SILO (SIngLe Optical surface) design. 

Figure 15: Example of a Single Surface Imaging Secondary Concentrator. 

Warren W. Smith, Modern Optical Engineering. Thfi Design of Optical Systems (New York: 
McGraw-Hill Book Company, 1966), p. 233. 
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Some might argue that this system still has an extra optical reflection loss at the secondary 
lens input surface that is not there in a metal cone secondary system. In fact, the metal cone 
system may require a cell covering of some type to achieve acceptable cell lifetimes in the 
field. This cell covering could introduce a similar optical loss, in addition to the losses due to 
the imperfect reflectivity of the aluminum cone. Since all rays pass through the glass, the SILO 
lens will have a significant absorption loss unless a low absorptivity glass such as BK.7 is used. 

Figure 16 shows a close-up view of the secondary and the cell. The cell is shown along 
its diagonal. The two lines under the cell indicate the width of the cell along its side. 

The secondary sides could be straight, but in fact in an actual part they would be slanted 
in toward the cell to make the piece moldable, as they are shown here. Only the top surface is 

optically active, so only the top surface needs an optical finish. The sides can be whatever 
shape is necessary for moldability and to clear other parts of the cell assembly. The flat 
bottom surface can be somewhat rough (optically) since it is filled in by the glue that glues the 
secondary to the cell. Appropriate glues have been examined by various Sandia contractors 
who used TIR secondaries on photovoltaic cells. 

Figure 16: Close-up of the secondary lens and cell assembly in a SILO design. 
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This SILO secondary may look similar to a TIR secondary, especially when manufactured 
with slanted sides, but optically it is a completely different approach. The conical sides on a 

TIR secondary are optically active. TIR secondaries proved hard to mold and hard to mount, 
because of the tolerances required on the corner where the secondary met the cell. This SILO 
secondary has no such requirements. Hence the similarity in physical appearance should not 
cause those who have rejected TIR secondaries to reject this approach. 

It is instructive to calculate the performance of a specific SILO design. For comparison 
purposes, we will look at the calculated performance of a 300X geometric concentrator module 
while keeping as many of the parameters as possible the same as in the earlier example using an 
egg-shaped secondary. The cell is square, the primary Fresnel lens is a 7-inch square 
compression-molded lens with 0.06-inch wide facets, and the lens-to-cell spacing is 12.518 
inches. The secondary is molded out of BK.7 glass. The secondary is composed of half of an 
ellipsoid on the top and a cylinder with slanted sides on the bottom. This particular secondary 
has for its top surface half of an ellipsoid with a minor axis of 0.740 inches and a major axis 
of 0.836 inches. The bottom part is a cylinder or a cone 0.740 inches in diameter at the top 
and 0.555 inches high (less the thickness of the glue). Thus the total height from the cell front 
surface to the top surface of the secondary ellipsoid is 0.978 inches. The bottom diameter of 
the SILO secondary would be equal to or greater than the cell diagonal. 
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Figure 17: The SILO optical system used for modeling. 
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Figure 19 shows the spot diagrams for a rectangular array of fixed points on the primary 
lens. The imaging is, as before, notperfect, but it is certainly good enough. This diagram is 
roughly similar to Figure 4 for the egg-shaped secondary. 
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Figure 19: Spot diagram showing the imaging properties of the SILO secondary lens. 
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The computer printout. Figure 20, shows the ray spot patterns for this design with a 

normal sun and uniform illumination of the Fresnel lens when everything is in perfect 
alignment: 
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Figure 20: Monte Carlo ray trace spot patterns for the 300X SILO secondary example. 
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Figure 21 below shows the variation in short-circuit current flux over the area of the cell. 
The cell occupies all but the outer row of squares in the figure. Note that the flux is extremely 
uniform. The major difference between this figure and Figure 6 for the egg-shaped design is 
that this design has a slightly bigger guard band around the edge of the cell active area. 
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Figure 21: Short-circuit current flux for the cell in the 300X SILO secondary example. 
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The graph in Figure 22 shows the optics transmission versus tracking error with an ideal 
AR coating. It is virtually flat out to 0.7 degree, and quite usable out to a 1.1 degree tracking 
error. The f-number definition used here is the primary lens-to-secondary distance divided by 
the primary lens diagonal. 
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Figure 22: Optical transmission (short-circuit current weighted) of the complete optical system 
versus tracking error in the 300X SILO secondary example. 
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The peak flux occurring on the cell gives a good indication of how uniform the flux 
distribution stays. The curve in Figure 23 shows that the peak flux remains below 350 suns out 
to 0.8 degree tracking error, and only reaches 470 suns at a 1.35 degree tracking error. 
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Figure 23: Peak flux density (short-circuit current weighted) of the complete optical system 
versus tracking error in the 300X SILO secondary example. 
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As with the egg-shaped secondary lens, the curves shown so far have been for an ideal 
multi-layer AR coating applied to the secondary lens. The same curves were calculated for a 

single layer AR coating of a material such as MgF. Such a single-layer AR coating may be 
economically viable. The transmission curve for that case is shown in Figure 24. 

F1.2 300X SILO SECONDRRY uith SINGLE LRYER RR CORTING 

Figure 24: Optical transmission (short-circuit current weighted) of the complete optical system 
versus tracking error for the 300X SILO secondary example with a single layer AR 
coating. 
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The peak solar flux curve for a single layer AR coating on the secondary lens is shown in 
Figure 25. 
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Figure 25: Peak solar flux (short-circuit current weighted) of the complete optical system 
versus tracking error for the 300X SILO secondary example with a single-layer AR 
coating. 
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If no economically feasible AR coating can be developed, the SILO secondary lens would 
need to be used without an AR coating. The transmission curve for that case is shown in 
Figure 26. This is the worst case transmission curve. 
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Figure 26: Optical transmission (short-circuit current weighted) of the complete optical system 
versus tracking error in the 300X SILO secondary example with no AR coating. 
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The peak solar flux curve for a SILO secondary lens with no AR coating is shown in 
Figure 27. 
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Figure 27: Peak solar flux (short-circuit current weighted) of the complete optical system 
versus tracking error in the 300X SILO secondary example with no AR coating. 
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The SILO secondary has a higher optical transmission (except in the case of ideal AR 
coatings) than the egg-shaped secondary. It also provides cell encapsulation, whereas the 
egg-shaped secondary does not. Is there, therefore, any disadvantage to choosing the single- 
surface secondary? There is one disadvantage. The egg-shaped secondary has a diameter of 
0.890 inches, whereas the single active surface secondary has a diameter of only 0.740 inches. 
This is because the necessary optical power is split between two surfaces with the egg-shaped 
secondary, but all of the optical power must come from one surface in the SILO design. This 
smaller secondary cross-sectional area causes the curves of transmission versus any of the 
mounting or pointing errors to fall off slightly sooner, for example at 1.1° instead of 1.2° in the 
case of tracking error on the 300X system. If no AR coating is economically feasible, the 
advantages of the single active-surface secondary outweigh this minor disadvantage, and it is 
the design of choice for most applications. If an economic multi-layer AR coating can be 
found (unlikely), then the egg-shaped secondary is the best choice. If an economic single-layer 
AR coating can be found, then a detailed economic analysis would be necessary to see which is 
the better choice. Figure 28 shows the comparison for a 500X system. 
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Figure 28: Comparison of an egg-shaped secondary with a SILO secondary. 
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System Design Considerations 

In designing a system using a SILO secondary, we would like to know the optimum 
f-number of the primary lens and the maximum achievable concentration. To this end, a 

number of computer runs were done on a whole series of individually designed modules 
covering geometric concentration ratios from 100X to 10000X, and f-number's from 0.7 to 2.0. 
From the output of these computer runs, we can draw parametric curves that can be used in 
system design calculations. 

In each case (each point on a curve) to be shown on the next several pages, a separate 
single-layer AR coating was assumed, and the Fresnel lens facet angles and the secondary lens 
design were optimized for that case. 

Figure 29 shows the transmission of an entire 600X optics system (primary Fresnel lens + 

a BK.7 secondary SILO lens) as a function of the primary lens f-number for different tracking 
errors. F-number is defined as the focal length (primary lens to secondary lens spacing) 
divided by the lens diagonal. 
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Figure 29: Transmission of a 600X SILO system versus primary lens f-number. 



34 

300X BK? SILO 
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Figure 30: Transmission of a 300X SILO system versus primary lens f-number. 

Figure 30 shows the same information for a 300X system. Note that below about f-1.2, 
the transmission fall off becomes sharper. Above f-1.2, they asymptotically approach a limit. 
As the f-number of the primary lens becomes larger, the image of the sun at its focal point 
enlarges, but the secondary lens also has a longer focal length, so it becomes larger. If the 
lenses had no aberrations, these two effects would exactly cancel, and all of these curves would 
be straight horizontal lines. Because the Fresnel lens aberrations worsen as the f-number 
becomes smaller, the curves in the figure drop. As f-number increase, the module becomes 
deeper and the size of the glass secondary increases, both increasing costs. An optimum 
f-number may be determined by balancing these curves against cost curves. 
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Figure 31: Transmission of a 1000X SILO system versus primary lens f-number. 

Figure 31 shows the same curves, but for a 1000X system. As expected, the transmission 
numbers fall off more sharply with tracking error. Otherwise, the curves are basically similar 
to the curves on the previous two pages. (The additional "noise" in the curves is caused by the 
fact that each point involves a separate design. The designs were done by visually focusing the 
rays using the close-up side view of the ray traces in the James Associates computer code. 
This noise implies that if a real 1000X system is built, the focusing will have to be very 
carefully designed.) 
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This final figure. Figure 32, in the series shows the curves for a 3000X system for 
comparison. Note that the wider range covered by the vertical axis gives the appearance that 
the fall off at small f-number's is not as great, whereas in fact it is greater than the previous 
curves. This high a concentration is clearly not practical in a system with real tolerances. 
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Figure 32: Transmission of a 3000X SILO system versus primary lens f-number. 
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Another way to look at these data is to examine the maximum geometric concentration 
ratio that can be used for different f-number's and different desired allowable tracking errors. 
This curve (Figure 33) was plotted assuming a requirement for an optical transmission >.83 with 
a single-layer AR coating on the secondary BK.7 SILO lens. 
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Figure 33: Obtainable geometric concentrations versus allowable tracking error and primary 
lens f-number. 

Clearly for cases with a very high cell cost, pushing the designer to high concentration 
ratios, a large f-number primary lens is preferred. For moderate concentration ratios, good 
transmission values can be obtained over a wide range of f-number's, but increasing the 
f-number increases the allowable tracking error. These curves can be used with curves of cost 
versus module depth and cost versus array stiffness to determine an optimum system design. 
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Properties of Glass Appropriate for an Imaging Secondary 

Not all glasses are appropriate for use in this type of secondary optical element. There are 
four important properties to consider 

1. Moldability 
2. Ability to withstand high solar flux levels 
3. Refractive index 
4. Optical transmission 

The moldability criterion suggests using a plastic material, but plastics may be incapable 
of meeting the second criterion. Figure 34 shows the flux density that occurs in the middle of 
a 300X SILO secondary. It may well be that this 10000 sun flux would destroy a plastic lens, 
although it would be very nice if this were proven wrong. 
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Figure 34: Solar flux density in the middle of a SILO secondary element. 
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Criterion number 3, Refractive index, is a very important system consideration. The 
higher the refractive index of a glass, the less curvature it needs to produce a given optical 
power. With less curvature, the lens diameter increases. With a larger diameter, more rays are 
collected and the allowable tracking error goes up. Figures 35 and 36 show the optics 
transmission versus tracking error for an f-1.2 300X system designed using three different 
types of glass for the SILO secondary element. (The refractive index given is measured at the 
0.589-micron sodium line.) 
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Figure 35: Optics transmission as a function of tracking error for three different glasses. 
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Figure 36: Three different glasses near the 0 tracking error point. 

Figure 36 shows the identical curves, but with the vertical axis greatly expanded. Clearly 
the higher index material is preferred. The difference would be even more pronounced if we 

were looking at a system with a higher geometric concentration. 

Another way to lopk at the effect of refractive index is to observe that for a given desired 

allowable tracking-error range; increasing the refractive index of the secondary glass allows a 

higher concentration ratio and hence a smaller cell. 
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The optical transmission, criterion 4, of a candidate glass should be very carefully 
examined over the entire solar spectrum. This optical element is quite thick, and even very 
small amounts of an element like iron (which gives glass a greenish color and absorbs light in 
the red and near-infrared) can drastically reduce the optical transmission. Figure 37 shows the 
optical transmission of the system (as measured by the short-circuit current of a Si cell) as a 

function of the near-infrared absorption coefficient of a hypothetical glass in an f-1.2 300X 
SILO secondary. 

A typical EGG or SILO secondary is about 5 cm tall. If BK7 glass is used, absorption in 
the BK7 glass reduces the short-circuit current of a Silicon cell about 0.5%. On the other hand 
if Pyrex is used, the short-circuit current of a Silicon cell is lowered about 8% by absorption in 
the Pyrex. Thus a substantial efficiency loss results, as well as significant heating in the glass. 
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Figure 37: Optical transmission versus secondary glass near-infrared absorption coefficient. 

Clearly a candidate glass should have an absorption coefficient below 0.05 per cm across the 
near-infrared spectrum to be useful in this application. Impurity content can vary drastically 
from batch to batch on some low-cost glasses, so don't rely on-testing one sample, but include 
absorption coefficient maxima as part of the specification given to a glass manufacturer. 
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Operation of the SOLO Secondary at other than the Focal Point 

If you examine Figure 38, which is a repeat of Figure 18, you will notice that the total 
diameter of the ray bundles decreases toward the center of the secondary. Remember that 
these rays are shown for a "sun" with an angular diameter 4 times larger than the real sun; 
hence, rays are shown for all tracking errors (out to about 1.5 degrees) at once. If the 
secondary were made shorter, the cell could be made smaller and still capture all of the rays. 
Or, if the cell were kept the same size, the secondary could be made larger and would capture 
more rays from the primary lens, allowing a larger tracking error range. Taking this approach 
would, of course, violate the imaging conditions, which gives this secondary many of its 
worthwhile properties. But, perhaps if the deviation from the exact focal point were small, 
most of the desired properties would be retained, while still producing an improved error 
tolerance. 
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Figure 38: Close-up of a SILO cell assembly showing the imaging properties. 
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This concept was tested using the computer model. Figure 39 shows a trial dp^.on 
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Figure 39: Close-up of a SILO cell assembly with an enlarged secondary. 
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Figure 40 is a spot diagram, similar to Figure 19, which shows the extent of the spreading 
of each ray bundle for this system. Each spot on the cell is about 0.044 inches in diameter. 
Thus we have a situation in which the rays shift about 0.02 inches per degree of tracking error, 
instead of a nominal shift of 0 under the focus condition. This is still a fairly small shift, and 
the bundles are still distributed quite uniformly across the cell. 

'SUN' LENS 

SECONDRRY INPUT 

17GQQ RRYS 

Figure 40: Spot diagram showing the ray bundle size on the cell. 

These results looked hopeful, so a full computer run was done to check the actual flux 
profile and the tracking error tolerances. 
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The flux uniformity which was obtained is shown in Figure 41. Compared with Figure 
20, which is for the in-focus case, the sides are slightly slanted instead of straight up and 
down, but otherwise the distribution is equally uniform. This distribution should give excellent 
cell performance. 
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Figure 41: Cell short-circuit current flux in the 300X SILO enlarged secondary example. 

There is, of course, a limit to how far from the focal point one can go while still 
maintaining a reasonable flux distribution. Figure 34 showed the distribution near the middle 
of the secondary. That distribution would not be useable on a cell and would show drastic 
movement with tracking errors. 
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The real test of this beyond-focus concept comes in off-track performance. Figure 42 
shows clearly the advantage of the larger secondary. The beyond-focus secondary gives an 
extra 0.3 degree of allowable tracking error. 
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Figure 42: Comparison of an on-focus to a beyond-focus SILO secondary. 
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F1.2 300X SILO 

Figure 43: Peak solar flux (short-circuit current weighted) of the beyond-focus optical system 
versus tracking error. 

Figure 43 shows that the flux profile remains extremely uniform over the extended 
tracking error range. Comparing this profile with that of Figure 23 shows that the peak flux as 

a function of tracking error behaves almost identically to the on-focus case. 

There are two important conclusions resulting from these observations. First, the 
tolerances on the secondary height need not be as tight as one might first infer from the need 
to maintain focusing. This may be important in a low-cost molding operation. Second, in 
doing an overall system design, the beyond-focus case should be carefully examined. 
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Conclusions 

There is no doubt that this double-imaging optics system is an elegant and straightforward 
method for designing PV optical systems. This system makes design and optimization of the 
optics straightforward, replacing the mixture of art and science that normally goes into a solar 
optical design. It results in wider tolerances to all kinds of mounting and pointing errors than 
any other known design, maintaining high optical transmission values and extremely uniform 
solar flux profiles over very reasonable manufacturing and tracking tolerances. Figure 44 

shows the flux uniformity when operating the f-1.2 300X SILO system with a 0.1-inch 
mounting error in the lens-to-cell spacing, a 0.1-inch mounting error in the cell plane (the cell 
assembly is not positioned directly under the lens), and a 0.25-degree tracking error (in a 

direction orthogonal to the cell mounting error). In this figure the SILO has as ideal AR 
coating applied. The transmission is down less than 0.1% from the value with everything 
aligned perfectly, and the flux profile is still uniform. No other known concentrator system 
performs this well. The SILO optical system is worth serious consideration for new 
concentrator optical designs. The major potential drawback for the SILO, that must be taken 
into account for cost effective designs, is the cost of the AR coating or the reflection loss at 
the air-to-SILO interface which results from its omission. 

3-D PLOT OF Fl.£ 30QX SILO ujl th TRRCK3NG and MOUNTING ERRORS 
E1 - 33 Rz - 30 

Mini mum Concentration ~ 0 Suns 
Maximum Concentration - 341 Suns 

Figure 44: Flux uniformity under a combination of error conditions. 
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In the process of performing this work, computer ray trace and primary/secondary lens 
design programs were developed that allow the user to design and evaluate both lenses (with 
either an EGG or a SILO secondary) for a particular application. Many of the figures in this 
report were generated by these programs. These programs are available from James Associates 
for HP 9000 and PC computers. 
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